201 research outputs found

    Incorporating a humanoid robot to motivate the geometric figures learning

    Get PDF
    Technology has been introduced into educational environments to facilitate learning and engage the students interest. Robotics can be an interesting alternative to explore theoretical concepts covered in class. In this paper, a computational system capable of detecting objects was incorporated into the robot NAO, so it can Interact with students, recognizing geometric shapes with overlap. The system consists of two models of neural networks and was evaluated through a sequence of didatic activities presented to students of the 5th year, aiming to encourage them to perform the tasks. The robot operates autonomously, recognizing and counting the diferente objects in the image. The results show that the children felt very motivated and engaged to fulfill the tasks.São Paulo State Research Foundation (FAPESP)Brazilian National Research Council (CNPq

    Inserção de um robô humanoide no ensino de objetos geométricos 2D sobrepostos

    Get PDF
    Robotics, introduced into educational environments, can be an interesting alternative to explore theoretical concepts covered in class, faciliting learning and engaging the student’s interest.In this paper, a computational system capable of detect objects was incorporated into the robot NAO, so that can interact with students, recognizing geometric shapes with overlap. The system consists of two models of neural networks and was evaluated through a sequence of didatic activities presented to students of the 5th year, aiming to encourage them. The robot operates autonomously, recognizing and counting the diferente objects in the image. The results show that the children felt very motivated and engaged to fulfill the tasks.A robótica, inserida em ambientes educacionais, é uma alternativa interessante para explorar conceitos teóricos abordados em sala de aula, facilitando o aprendizado e cativando o interesse dos alunos. Neste artigo, um sistema computacional capaz de detectar objetos foi incorporado ao robô NAO para que o mesmo possa interagir com alunos, reconhecendo figuras geométricas com sobreposição. O sistema é constituído por dois modelos de Redes Neurais e foi avaliado por meio de uma sequência de atividades didáticas apresentadas a alunos do 5o ano, visando estimulá-los. O robô atua autônomamente, reconhecendo e contando os diferentes objetos na imagem. Os resultados apresentados mostram que as crianças se sentiram muito motivadas para cumprir as tarefas

    Attention based object recognition applied to a humanoid robot

    Get PDF
    Analysis and recognition of objects in complex scenes is a demanding task for a computer. There is a selection mechanism, named visual attention, that optimizes the visual system, in which only the important parts of the scene are considered at a time. In this work, an object-based visual attention model with both bottom-up and top-down modulation is applied to the humanoid robot NAO to allow a new attention procedure to the robot. This means that the robot, by using its cameras, can recognize geometric figures even with the competition for the attention of all the objects in the image in real time. The proposed method is validated through some tests with 13 to 14 year old kids interacting with the robot NAO that provides some tips (such as the perimeter and area calculation formulas) and recognizes the figure showed by these children. The results are very promissor and show that the proposed approach can contribute for inserting robotics in the educacional context.São Paulo State Research Foundation (FAPESP)Brazilian National Research Council (CNPq

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    AbstractOptimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.</jats:p

    An object recognition system incorporated into a humanoid robot applied in education

    No full text
    Cada vez mais observa-se a inserção de novas tecnologias em salas de aulas. Com o auxílio de políticas publicas, computadores ligados a internet tem estado presentes nas classes nos mais longinquos lugares do nosso país. Isto tem proporcionado que o conhecimento chegue de forma mais ampla e irrestrita a todas as crianças em fase de desenvolvimento. Na ultima decada, além de microcomputadores, tem-se observado a presença, em salas de aulas, de Ipads, celulares, cujos proprietários são os próprios alunos e até mesmo lousa eletrônica em escolas com poder aquisitivo maior. Aliado a isto, nota-se também a inserção de kits robóticos que tem motivado muito os alunos no aprendizado de raciocínio lógico e de programação, pois, eles experimentam o conceito: \"aprender por meio do fazer\". O uso de todas estas tecnologias tem como objetivo principal cativar a atenção dos alunos, incentivar a pesquisa e o aprendizado interativo, uma vez que o ensino antes expositivo dá lugar ao ensino interativo, isto é, que conta com a participação mais ativa do estudante. Nesta direção, esta dissertação de Mestrado traz uma inovação no sentido que está sendo proposto um sistema que permite que um robô humanoide seja inserido em salas de aulas. Trata-se de um protótipo que permite que o robô reconheça figuras geométricas planas, que pode ser estendido para outros tipos de conteúdos. O objetivo é a integração de um sistema de visão computacional em um ambiente de controle de um robô humanoide para torná-lo capaz de reconhecer figuras geométricas planas, para ser utilizada como uma ferramenta de ensino. Este sistema de visão é baseado em técnicas de Atenção Visual e utiliza uma rede neural LEGION para segmentar os objetos mais salientes da imagem e uma rede neural do tipo Multicamadas (MLP), para realizar a classificação desses objetos. Graças a este sistema de visão, o robô consegue discernir figuras sobrepostas independente do ambiente real no qual esteja inserido. Para avaliar o desempenho do sistema proposto, algumas aplicações foram desenvolvidas que envolveram a participação de crianças interagindo com o robô no reconhecimento de figuras geométricas. Embora sejam necessários uma maior numero de experimentos, os resultados obtidos indicam que o sistema proposto apresenta-se como uma ferramenta alternativa, promissora e interessante, tendo sida muito bem recebida por parte dos alunos e professores.Increasingly there has been the introduction of new technologies in the classroom. With the help of public policies, computers connected to the internet has been used in the classes in the far reaches of our country. This has provided the knowledge reachs broader and unrestricted way to all children under development. In the last decade, besides computers, has been seen the presence in classrooms of Ipads, smart phones, owned by the students themselves and even electronic whiteboard in schools with higher purchasing power. Added to this, there is also the inclusion of robotic kits that has motivated much students in learning logical reasoning and programming, as they experience the concept: \"learning through doing\". The use of all these technologies aims to captivate the attention of students, encourage research and interactive learning, since the school, before exhibition, gives way to interactive teaching, that is, who has the most active student participation. In this direction, this Masters thesis brings an innovation in the sense that is being proposed a system that allows a robot humanoid is inserted into classrooms. It is a prototype that allows the robot to recognize planar geometric figures, which can be extended to other types of content. The goal is the integration of a computer vision system in a control a humanoid robot environment to make it able to recognize This has provided the knowledge gets broader and unrestricted way all children under development geometric figures, to be used as a teaching tool. This vision system is based on Visual Attention techniques and uses a neural network LEGION to target the salient objects image and a Multilayer (MLP) neural network, to perform the classification of these objects. Thanks to the vision system, the robot can distinguish independent of the actual environment in which overlapping figures is inserted. To evaluate the performance of the proposed system, some applications were developed that involved the participation of children interacting with the robot in the recognition of geometric figures. Although a larger number of experiments are needed, the results indicate that the proposed system is presented as an alternative tool, promising and interesting, and it was very well received by students and teachers

    EEG signal detection and analysis with application in educational robotics

    No full text
    Com a tecnologia, existem muitas formas de se aprimorar o aprendizado, mesmo fora da sala de aula. Sistemas educacionais têm sido bastante empregados para essa finalidade, inclusive com o uso de robôs, mas ainda pecam em alguns aspectos de interação com os humanos. As interfaces cérebro-computador (BCI) são sistemas que permitem a comunicação entre usuário e computador a partir de informações do cérebro, podendo dar mais robustez aos sistemas robóticos educacionais. As dificuldades dos alunos são claras durantes provas e outras atividades de avaliação, o problema são os erros durante os estudos para essas provas. Para ajudar neste ponto do aprendizado, foi utilizado um sinal evocado no cérebro relacionado à percepção do erro por um usuário, chamado de Error Related Potential (ErrP), que pode ser medido no EEG, uma forma não-invasiva de BCI. Porém, esses sistemas ainda pecam na qualidade do sinal obtido e na acurácia em encontrar esses momentos de erro. Neste trabalho, foi proposto um sistema de detecção do ErrP, passando pela filtragem, extração de características e classificação do sinal. O pré-processamento do sinal passou por filtros FIR e ICA para limpeza de ruídos e artefatos, foram criados vetores de características com as transformadas de Fourier e as famílias Haar e Daucechies de transformadas wavelets. Para classificação, foram comparadas redes neurais (MLP) e de aprendizado profundo (CNN). Os resultados demonstraram uma acurácia de 96% quando o sinal foi aplicado na base criada, e de 77,23% quando aplicada a toda a rede, mostrando ser promissora para utilização em sistemas educacionais. Além disso, mostrou que a diferença entre as famílias wavelets apresentadas neste trabalho foram pequenas, e que sua escolha pode ser feita considerando o tempo para processamento do sinal. Este trabalho serve como um módulo para um sistema educacional maior, que visa preencher algumas lacunas encontradas nos trabalhos disponíveis.With technology, there are many ways to improve learning, even outside the classroom. Edu- cational systems have long been employed for this purpose, including the use of robots, but there are still a lack in some aspects of human interaction. Brain-computer interfaces (BCI) are systems that allow communication between user and computer from brain information, and can give more robustness to educational robotic systems. Students difficulties are clear during tests and other assessment activities, the problem is errors during the studies and preparation for these tests. To help with learning, a brain-evoked signal related to a users perception of error, called Error Related Potential (ErrP), was used, which can be measured in EEG, a noninvasive form of BCI. However, these systems still lack the quality of the signal obtained and the accuracy of finding these Errp signals. In this work, a ErrP detection system was proposed, including filtering, feature extraction and signal classification. The preprocessing of the signal went through FIR and ICA filters for noise and artifact cleaning, feature vectors were created with the Fourier transforms and the Haar and Daubechies families of wavelet transforms. For classification, neural networks (MLP) and deep learning networks (CNN) were compared. The results showed an accuracy of 96% when the signal was applied to the base created, and 77,23% when applied to the whole database, showing to be promising for use in educational systems. Moreover, it showed that the difference between the wavelet families presented in this work were small, and that their choice can be made considering the time for signal processing. This proposal works as a module for a larger education system, which aims to fill in some of the gaps found in the available work

    A Question Game for Children Aiming the Geometrical Figures Learning by Using a Humanoid Robot

    No full text
    Smartphones and tablets have apps, web services and all other new digital media present at classroom has been used to enhance traditional teaching methods. Although satisfactory results were achieved with educational games and robotics, there are a lack of intimacy and interaction, especially when it comes to applications with children. In this paper, we are proposing a question game to verify the learning of children in relation to classification of 2D and 3D geometrical figures. Two groups of 11-14 year-old children were compared after they took classes with the robot, each group with a different level of interactions, participating of a question game. The Mean Opinion Score is used by children for sending a feedback report of the game. The results obtained show children’s performance with high interaction robot was improved compared to the low interaction group. This suggests that a high interaction robot is a significant manner to help teachers, motivating children to study at home to defeat the robot in game.São Paulo State Research Foundation (FAPESP)Brazilian National Research Council (CNPq
    corecore